Complexity and Growth for Polygonal Billiards

نویسنده

  • J. CASSAIGNE
چکیده

We establish a relationship between the word complexity and the number of generalized diagonals for a polygonal billiard. We conclude that in the rational case the complexity function has cubic upper and lower bounds. In the tiling case the complexity has cubic asymptotic growth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity of piecewise convex transformations in two dimensions, with applications to polygonal billiards

ABSTRACT We introduce the class of piecewise convex transformations, and study their complexity. We apply the results to the complexity of polygonal billiards on surfaces of constant curvature.We introduce the class of piecewise convex transformations, and study their complexity. We apply the results to the complexity of polygonal billiards on surfaces of constant curvature.

متن کامل

Complexity of Piecewise Convex Transformations in Two Dimensions, with Applications to Polygonal Billiards on Surfaces of Constant Curvature

We introduce piecewise convex transformations, and develop geometric tools to study their complexity. We apply the results to the complexity of polygonal inner and outer billiards on surfaces of constant curvature. 2000 Math. Subj. Class. 53D25, 37E99, 37B10.

متن کامل

Entropy and Complexity of Polygonal Billiards with Spy Mirrors

We prove that a polygonal billiard with one-sided mirrors has zero topological entropy. In certain cases we show sub exponential and for other polynomial estimates on the complexity.

متن کامل

Veech Groups, Irrational Billiards and Stable Abelian Differentials

We describe Veech groups of flat surfaces arising from irrational angled polygonal billiards or irreducible stable abelian differentials. For irrational polygonal billiards, we prove that these groups are non-discrete subgroups of SO(2,R) and we calculate their rank.

متن کامل

Growth Rates for Geometric Complexities and Counting Functions in Polygonal Billiards

We introduce a new method for estimating the growth of various quantities arising in dynamical systems. Applying our method to polygonal billiards on surfaces of constant curvature, we obtain estimates almost everywhere on direction complexities and position complexities. As a byproduct, we recover power bounds of M. Boshernitzan on the number of billiard orbits between almost all pairs of poin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001